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Analysis of a Ridge Waveguide Using
Overlapping T-Blocks

Yong H. Cho and Hyo J. EonSenior Member, IEEE

Abstract—A T-block (TB) approach is proposed to analyze
the dispersion relation of a ridge waveguide. The field rep-
resentations of a TB are obtained with the Green’s function Region (I)
and mode-matching technique. Rigorous, yet simple dispersion y b
equations for symmetric and asymmetric ridge waveguides zéj
are presented using a superposition of overlapping TBs. The
rapid convergence characteristics of the dispersion equation are Miers »
illustrated in terms of the cutoff wavenumbers. A closed-form egon \
dispersion relation, based on a dominant-mode approximation, §\\\\a\\\\\\ \\
is shown to be accurate for most practical applications such as 2a
couplers, filters, and polarizer designs.

5

Index Terms—Dispersion, Green’s function, mode-matching Fig. 1. Geometry of a TB.

technique, ridge waveguide, superposition.

to other waveguide structures, whose geometry can be broken
into several overlapping TBs such as the finline, shielded mi-
crostrip line, and multiconductor transmission line.

HE propagation and coupling characteristics of a ridge

waveguide have been investigated with various methods [I. ANALYSIS OF TB

[1]-[7] because of its broad-band, low cutoff-frequency, and Assume that a TE wave propagates along theirection
low-impedance characteristics compatible with a coaxial ”n%side a TB in Fig. 1. The phase factef?*—«? is omitted
When the geometry of a waveguide is complicated such a?h‘?oughout. In region ()4d < y < 0), we represent thél.
ridge waveguide, the formulation and dispersion analysis b&imponent as

comes naturally involved. Itis, therefore, desirable to develop an

analysis scheme with fast CPU time, increased accuracy, simp}@(x y) = i o €08 Ay (2 + 1) 08 En(y + d)
applicability, and wide versatility. To that end, we propose a=*""’ — m m m
new approach using the T-block (TB) and superposition. Based

on the idea of superposition, the method of overlapping regions % [u(x +a) —ufz - a)] (1)
has been applied to solve some diffraction and waveguide pre¥herea,, = mn/(24), &, = k2 — 32 — a2, ko = 27/ )0,
lems [8], [9]. In [10], a simple and new equivalent network foandu(-) is a unit step function. In order to represent fiigfield
a T-junction, which is similar to a TB, is presented to obtaith region (Il) 0 < v < b), we divide region (lI) into two subre-

the closed-form expression for open and slit-coupteglane  gions such as shown in Fig. 2(a) and (b). Based on the superpo-
T-junctions. In this paper, the approach of the TB and supejition, the field in region (Il) is given by

position is employed to divide a total region into several over- o

lapping TBs. It is possible to represent the field within a TB H! (2, y) = Z S [Hm(a:, y) + RH(z, y)] @)

in simple and numerically efficient series based on the Green’s ’
function and mode-matching method. The Green’s function ap-

- .
proach allows us to reduce the number of unknown modal c3n€"e Hm(z, y) and R, (z, y) are the field components

efficients and improve the convergence rate. Since the Greew;ghmjsubreglons of Fig. 2(a) and (b), respectively. Similar to
function for the TB is available, the involved residue calculud"€ 2= (#: ¥) component, we represeft,, (z, y) as

as in [7], is unnecessary, thereby increasing computational effi- cos&n(y — b)
ciency. The advantage of the TB approach lies in substantia y"(x’ y) = Emsin(&,,b)
reducing the amount of computational effort. In this paper, we « [u(x ta)—u(z— a)]. A3)
will analyze the propagation characteristics of a double-ridge

waveguide by utilizing the TB approach and superposition prifultiplying the E..-field continuity aty = 0 between regions

ciple. Itis important to note that our TB approach is applicablé) and (Il) by cos a;(z + a) and integrating overa < z < a,
we obtain

. INTRODUCTION

m=0

cos am(z + a)

Manuscript received September 2, 2001; revised November 5, 2001. Sm = —qmé sin(£ d) (4)
The authors are with the Department of Electrical Engineering, Korea m mam mess

Advanced Institute of Science and Technology, Daejeon 305-701, Kor: . . N
(e-mail: hjcom@ee.kaist.ac.kr). The component oH,,.(+a, y) results in th.eH% discontinuity
Digital Object Identifier 10.1109/TMTT.2002.803449. atz = +a. In order to enforce théf, continuity atz = +a,
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N
\\\b \;\6\\\_\0\>\\(§\}: where

sen(c — a/) |l =7l - (—1ymei@—le==D)]

fH(.’L',.’L'/;C) = 1— (_1)nlei<T

% o & \Ei\\ dsgn(z) = 2u(z) — 1. The total longitudinal o
Region andsgn(z) = 2u(x) — 1. The total longitudinal magnetic fie
&\\\i\\i\\\\\ \\\ is, therefore, given as
2a
. r . Note that theE, (x, 0)-field, which is produced by, (x, 0),
: Re: fon (I1) is zero. Hence, th&',- and H_.-field continuities are satisfied,
b : g1 except for thefd.-field discontinuity aty = 0 and—a < x < a.
er_ZC By enforcing the continuity of s (z, 0) for —a < = < a, it
SRR is possible to determine the dispersion relation for a TB. If a
2a waveguide structure can be divided into a number of TB, it is
(b) possible to use (10) directly in the derivation of dispersion rela-
Fig. 2. Subregions of a TB. (a) Subregion . (x, ). (b) Subregion for tion. The advantage of our TB approach lies in its computational
Rl (x, y). simplicity since (10) can be repeatedly used for each TB. In the

following section, we will show how to obtain the dispersion re-

we next consider a contribution frofi” (x, ). Utilizing the lation for a ridge waveguide from (10).
Green’s function relation [11] gives Similarly from the analysis of the TE mode, tl#& compo-

nents for the TM mode are represented as
Rg(x, y) =— V x A

z component

Ef(x, y) = Z PmsSinan(z + a)siné,, (y + d)

=-V X /GH 7, 7 d7 |4c0mponent m=l1
[ (x4 a) — u(z — a)] (11)
. e " "
/an GH(7, 7 )]Hm(7 )d7 (5) EH x y Z P SIDL Sm m(a:, y) +R,€($, y)]
whereA is a magnetic vector potential(r’) = H,,,(7')d, x f, m (12)
n is the outward normal direction td in Fig. 2(a)
) & N where
ror') =2 s(1vy) cos(vy x, %' & 6 sin&,, (b —
b ; Oy o ) (©) E,.(z,y) = —an(émb)y) sin a(z + a)
o, o5 €)= sin((x + T/2) sin¢(T/2 — x5) % X [u(a: +a) —u(x — a)] (13)
sin(¢T) 9
| . RE (2, y) = / Culr. ') o [Eulr”)] d’
z- = is the greater ofr or z/, z. = is the lesser ofr or an’
00 = 2,00 = 1(m =1,2,..),n = vr/b { = amL s bsm (Mwy)
k3 — 32 —n2, Gg(r, ') is shown in [11], andy(z, ='; () = Z G2 —a)
is a one-dimensional Green'’s function with an electric wall at m
x = +T/2. Note thatr denotes an observation poifi, ¥), [fE( T T C’U) — (=D fu(@; 0 G)]
ands” is a source pointz’, ¥/) = (+a, 0 < &/ < b). The scat- (14)
tered componenkZ(z, y) is thought of as the field produced N2 ] . , ,
to eliminate the surface curred(s’) = H,,(r')d. x 7. This Gp(r, 1) = b > sin(my) sin(ny)g(w, 2 ¢)  (15)
v=1

means that?’ (-, y) produces thed.(+a, %) discontinuity
atx = 4a, which is an inverse sign t,,,(+a, %'). Integrating , eillz=a"l 4 (_1ymei(T=le=2"])
(5) with respect ta/ from 0 tob, we obtain p(z, 2’5 () = 1— (—1)meicT : (16)

b ) /
Rfl(a:,y) :/ OGy(r, v') cos&n(y' —b) o
0

o0 o) o Ti(e, y) = Bl(a, 1) + B (z. y). 7)
_ (_1)m/ G (r,r") cosém(y’ —b) dy’ . - -
0 Oz & sin(é,,b) Contrary to the TE mode, the total field; (x, ) is continuous
1 cos(nuy) aty = 0, while theH,,:-fieId is disc_ontinuogs. The c_zlispersion
=—— — 5~ relation can be obtained by enforcing tHe-field continuity at
bz awlCE ) y = 0for —a < = < a. Although R andRE are represented
X [fH(x, —a; C) — (=D fu(x, a; CU)] (8) inseriesforms, their convergence rate is very fast, thus, efficient

We then obtain the total longitudinal electric field as

=

z'=a
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wherec¢; = I /(2¢) and

IH(xv Y3 C)
xz+e
= / {cos am (2" + a) cos & (y + d)

o« [u(z’ + a) — w(z’ — a)] [u(y + d) — u(y)]

T Sl )+ )

(D X [u(y) —u(y — b)] } cosc(z’ —x+c)dx'.

Fig. 3. Geometry of a double-ridge waveguide. (20)

Since the integrand ofy (x, ¥; ¢) is composed of elementary
functions, the evaluation of (20) is trivial. In order to satisfy the
H, continuityat(—a <z < a,y=0)and(—a <z < a,y =

—d), we put(z, y) = (0, 0) and( —d) into (19), respectively,

as

Mg

[ W10, 0; a) + ¢21P(0, —d; a)} 0 (21)

Il
=

@ m

NE

Fig. 4. Superposition of two TBs. [qr(i)fg)( —d; a)+q(2)I(2)(0 0; a)} 0. (22

0

3

g2

7@ and obtain the dispersion relatlon for a double-ridge waveguide

When a double-ridge waveguide is symmetric with respect to

for numerical computations. Note that the convergence char#ee y-direction, g’ = ¢, Note that sign denotes even
teristics of 7 and E!7 are independent &f in Fig. 1. These and odd modes with respect to thlirection, respectively. The

characteristics are different from the standard mode-matchi@igpersion equations, i.e., (21) and (22), then reduce to a sim-

technique, where its convergence rate is mainly determined Bjified one as
T. WhenT — oo, our solutions converge to those of a rectan-

gular groove guide with an electric conductor covey at b in = 1 2
[12]. > qr(i)[ 1,0, 05 a) £ 1P (0, —d; a)} =0 (23
m=0
IIl. ANALYSIS OF RIDGE WAVEGUIDE USING TWO TBS In a dominant-mode approximatigm = 0, I = 0), (23) fur-

Itis possible to apply the TB approach to the dispersion anfter simplifies to
ysis for a double-ridge waveguide. We first divide a double-
ridge waveguide in Fig. 3 into two overlapping TBs, as showr](U(() 0; a) & ]}f)(o’ —d; a)
in Fig. 4. TheH .-field in a ridge waveguide is represented as

m=0, =0
= 2a[cos(k.d) £ 1]
H.(x,y) =T (e, 9) + TP (e, —y —d).  (18)

. 2a
+I€c Sln(kcd) m
Note that thez, y) coordinate in Fig. 3 is the global coordinate o tan(k.b)
system for a dpuble—ridge waveguide,_ and, v') in Fig. 4 is 25 S 1 ¢iu2a 4 T _ iy (T—2a)
the local coordinate system for subregions of TBs. The enforce- 7 (1= o)
ment of the boundary conditions on tli& -field continuities vy
is req(u)ired to determine the relations of modal coefﬁci@éﬁ% =0 (24)
andgsy. In matching thefd. continuity, it is expedient to intro- o
duce a general integration form as wherek. = \/k§ — 3% and(, = \/kZ — (vr/b)2. Similarly,
utilizing the approach of TB and superposition, we obtain the
I(z, y; ¢ TM dispersion relation of a double-ridge waveguide as
xz+c
= HZI(-T/a y)| (1) £7(2) _H,gl(x/’ y)| W 47(2) i
/H [ S S } 3 [ D180, 05 a) — p@I1P (0, —d; a)} =0 (25)

x cosc(z’ — x +¢)da’

—

3

=

= Z [q(l)l(l) ,;0) +a T (—2,—y — d; C)} (19) Z[ W1 (0, —d; a) - pR15(0, 0; a)} =0 (26)

m=0 =1

3
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CUTOFF WAVENUMBERS (IN RA[]l—ﬁr\?sLEEFi METER) OF THE FIRST EIGHT TE CUTOFF WAVENUMBERS (IN RAI;[I-QI\?SLEER”M ETER) OF THE FIRST EIGHT TM
MODES FOR ASINGLE-RIDGE WAVEGUIDE. PARAMETERS. ¢ = 1.7 mm, MODES FOR ASINGLE-RIDGE WAVEGUIDE. PARAMETERS. ¢ = 1.7 mm,
TW =T7T@ =19 mm,d = 0.3 mm, > = 52 = 9.35 mm TW =T@ =19 mm,d = 0.3 mm, > = b2 = 9.35 mm
Mode number 1 2 3 4 5 6 7 8 Mode number 1 2 3 4 5 6 7 8

m=20 91.34 333.1 379.9 5247 664.7 690.5 744.8 828.0 m=2 471.2 4714 7411 T741.7 748.3 T748.8 940.5 942.4
m=20, 2 92.40 333.2 380.7 525.8 665.3 692.1 7454 8289 m=2, 4 4711 4714 T41.0 741.7 7T48.2 T748.8 940.3 942.3
m=0,2 4 |92.60 333.2 3808 526.0 6653 692.1 745.5 829.2 m=2,4,6 |471.1 471.4 741.0 741.6 7482 748.7 940.2 9423
m=0, 2, 4, 69266 333.2 3809 526.1 6653 692.1 7455 829.2 m=2,4, 6, 84711 4714 741.0 7416 7482 748.7 940.2 9423
[5] 92.6 3332 381.1 526.3 6653 691.6 745.3 829.5 [5] 471.1 471.4 741.0 741.6 7481 748.7 940.0 9422

where
I(z, y; c)
wtel g a
:/ —Ei(.’t/’y) __E,gl(x/?L
e—c |OU T(L) 47(2) dy T(L) 4 7(2)

x sinc(z’ —x+c)dx’

= Z[Pm)f(l) v,y ©) = pDIP (—x, —y — d; C)} (27)

Cutoff wavenumber [rad/mml

m=0
Iz, y; o) . ‘ ¢ ‘ ‘
@+ 85 06 07 08 08 1
= / {Sill am(z’ + a) sin &, (y + d) s 7™ )
r—c
x [ (2’ +a) —u(x’—a)] [ (y+d)— (y)] Fig. 5. Cutoff wavenumber of th€E., mode in a double-ridge waveguide
iti i — 1.7 T — T —
— sin(&nd [Em(x’, y) + R (o )] Zgr)su_i_sbtg? E)I_ofs;t:nT(zfl)t?e ridge: & 1.7 mm, 7" = T = 19 mm, and
[u) — uly - )
L®, ’/ A LW, )/ A
X sine(a’ — x4+ ¢) dr’. (28) () ¥

In a dominant-mode approximatidm = 2, [ = 2) for a sym-
metric single-ridge waveguide, (25) and (26) reduce to

L% )

LW 5)°
18900, 0; ) + 12(0, —d; a)

m=2,1=2 Fig. 6. Geometry of an asymmetric double-ridge waveguide.

= a&a[ cos(&ad) £ 1] + sin(&ad)
ao dominant-mode solution agrees well with the higher mode solu-
|:ta11(§2b) tions, thus confirming the fast convergence.tA8 /(1) — d)
1 — ¢io2a 4 piCT _ ei(U(T—Qa)] approaches one, the solution converges to that of a single TB

2a3i = 72| A 1
- Z with 8 = 7 _ 4.

o G(@-a) (- eeT)

=0 (29) IV. ANALYSIS OF RIDGE WAVEGUIDE USING FOUR L-BLOCKS

For the analysis of an asymmetric double-ridge waveguide in
whereé, = \/kg — 3* — a3. Tables | and Il show the conver-Fig. 6, it is convenient to use an L-block (LB), as shown in Fig. 7.
gence characteristics of the TE and TM modes in a single-ridg@ asymmetric double-ridge waveguide in Fig. 6 is divided into
waveguide, respectively. The agreement of our solution with [RJur overlapping LBs, as shown in Fig. 8. Ti& -field in an
is excellent, and even a dominant-mode solutian= 0) is ac- asymmetric double-ridge waveguide is represented as the su-
curate within 1% error. This means that the dominant-mode djserposition of four LBs. Then
persion relations, i.e., (24) and (29), are useful for most practical
applications. Fig. 5 represents the cutoff wavenumber characteer( Y) :Lg})(% ) + Lg) (x —T+4+a® 4a®, u)
istics of theTE; o mode in a single-ridge waveguide versus the ’ :
position of a ridge. As the width of the ridg&increases, the +L (a(?’) —a® — g b— u)
cutoff wavenumber of th8'E;; mode decreases. This means @ . .
that the bandwidth of a single-mode operation increases. The + Ly (T —a® —a® — 2 b y) (30)
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Fig. 7. Geometry of an LB.

d(3)

4___.
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T TABLE Il
> N CUTOFF WAVENUMBERS (IN RADIANS PER METER) OF THE THREE TE
Region (IT) MODES FOR ANASYMMETRIC DOUBLE-RIDGE WAVEGUIDE USING TWO

b LBs. PARAMETERS. a(® = 10 mm,d™ = 10 mm,a®*> = 7.5 mm,
d® =15 mm,b =5 mm,T = 45 mm

Number of modes used 1 4 5

1 3725 1254 164.8
3 40.79 137.8 165.2
5 41.06 138.1 165.3
7 41.14 138.2 165.3

TABLE IV
CUTOFF WAVENUMBERS (IN RADIANS PER METER) OF THE FIRST FIVE
TE MODES FOR ANASYMMETRIC DOUBLE-RIDGE WAVEGUIDE USING

d(l)

N
2a(1)

Fig. 8. Superposition of four LBs.

where Ly(z, y)

points (z,y) for the H_.-field continuities are (0,0),
(T — oV —a® ) 0), (a® —a®, b), and(T — a¥ — a™®, b)
in the global coordinates of Fig. 6. Using the same procedure
as in Section lll, the dispersion relations of an asymmetric
double-ridge waveguide are obtained. For instance, the dis-
persion equation corresponding to the matching pg@ind) is

Two TBS. PARAMETERS. @ = 5 mm,d = 10 mm, T = 30 mm,
+ b1 =20 mm, T = 40 mm, b2 = 15 mm
L“”(x )
Number of modes used 1 2 3 4 5
+ + 1 40.96 80.36 107.0 137.7 165.3
@ 2 41.15 80.46 107.1 138.2 165.3
L% y)
+ 3 41.19 80.49 107.2 138.3 1654

\N‘w [6] 41.31 80.56 107.2 138.5 165.5
d(2)
(2)

= Ty(z + a, y)|m=even. Matching

obtained as
I (0, 0; a<1>)
JeY)
I
- /—a(l) [HZ (xl’ 0)|L<1>+L<2>+L<3>+L<4>
— HI(«, 0)|L(1)+L(2)+L(3)+L(4):|
) f (1)) / Fig. 9. H_.-field distributions of TE modes using two TBs. (a) Asymmetric
X cosa (x Ta dx double-ridge waveguide. (b) Symmetric double-ridge waveguide.
— Z (1)_[(1) 0. 0: a(l) (1) (4) . T
Q' Apg (Y Y5 (T'—a'—a'¥, b). In order to verify the validity of the approach
m=0 based on the LB, in Table Il we show the cutoff wavenumber
+ Q17 (a(l) +a? —T, 0; a(l)) of an asymmetric ridge waveguide of Fig. 3. For comparative
purpose, we also show the result with the TB approach for the
+q@®18) (3 _ 0 pe (D : : . _
DAL \ @ a7, 04 same geometry in Table IV. Since the width of the L&) is
) 7@ (T—a<1) @ . a(l))} twice that of the TB in our computation, the convergence char-
m acteristics of the TB is better. This is because additional higher
=0 (31) modes are needed to obtain convergence as the Riith re-

wherelpy(z, v;

gion (I) becomes wider. It is interesting to note that the cutoff

¢) = Ig(xz+a, ¥; ¢)|m=even. Itis straightfor- wavenumbers of the second and third modes in Table IV approx-

ward to obtain the remaining three dispersion equations cormgately agree with those of a rectangular waveguide, i.e., 78.54

spondingtdz, y) =

(T —a® —a®0),(a®—aM, b),and and 104.7, respectively. In Fig. 9(a), tti& -field distribution
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of the second mode in Table IV is illustrated. THe-field is [5] S. Amari, J. Bornemann, and R. Vahldieck, “Application of a coupled-
almost concentrated within the left-hand-side cavity of Fig. 3,  integral-equations technique to ridged waveguidéSEE Trans. Mi-

. N . L crowave Theory Techvol. 44, pp. 2256—2264, Dec. 1996.
whose field distribution is very similar to that of a reCtangmar [6] V. A. Lenivenko, “Propagation characteristics of asymmetric double

waveguide. Since the propagation constant for an asymmetric ridge waveguide,” in Asia—Pacific Microwave Conf. 2000, pp.
double-ridge waveguide is quite different from the rectangular __ 1235-1237.

. . . . . -..._[7] Y. H.Cho and H. J. Eom, “Fourier transform analysis of a ridge wave-
waveguide similar to the right-hand-side cavity, the wave within guide and a rectangular coaxial lindRadio Sci, vol. 36, no. 4, pp.

the right-hand-side cavity becomes evanescent. Hhdield 533-538, July—Aug. 2001.
plot of a symmetric ridge waveguide is shown in Fig. 9(b). The [8] | V. Petrusenko, A. B. Yakovelev, and A. B. Gnilenko, "Method of par-
H_-field is distributed in t it it should b tial overlapping regions for the analysis of diffraction problenfadc.
="NI€la IS distributed In two cavilies as It should be. Inst. Elect. Eng.pt. H, vol. 141, pp. 196-198, June 1994.
[9] A.B. Gnilenko, A. B. Yakovlev, and I. V. Petrusenko, “Generalized ap-
proach to modeling shielded printed-circuit transmission lin€sgc.
V. CONCLUSION Inst. Elect. Eng.pt. H, vol. 144, pp. 103-110, Apr. 1997.

; 10] P. Lampariello and A. A. Oliner, “New equivalent networks with simple
A novel TB approach has been proposed for analyzing Syn{_ closed-form expressions for open and slit-couplegplane tee junc-

metric and asymmetric ridge waveguides. Simple closed-form  tions "IEEE Trans. Microwave Theory Techol. 41, pp. 839-847, May
dispersion relations for ridge waveguides are expressed in 1993.

; ; il 11] R.E. Collin,Field Theory of Guided Wavegnd ed. New York: IEEE
rapidly convergent series. Computed results indicate that! Press, 1991, pp. 7278,

our method, based on a superposition of overlapping TBs, ifi2] B. T. Lee, J. W. Lee, H. J. Eom, and S. Y. Shin, “Fourier-transform
accurate and numerically efficient. A dominant-mode approx- analysis for rectangular groove guid¢éEEE Trans. Microwave Theory
imation for a ridge waveguide is shown to be valid and useful ~ Tech. vol. 43, pp. 2162-2165, Sept. 1995.

for most practical cases. It is possible to extend our theory to

the analysis of other complex waveguide structures that can be

. . . . ong H. Chowas born in Daegu, Korea, in 1972. He received the B.S. degree in
divided into a superposition of overlapplng TBs. For exampl fectronic engineering from the Kyungpook National University, Daegu, Korea,

the shielded microstrip line, finline, nonradiative dielectrig, 1998, the M.S. degree in electrical engineering from the Korea Advanced

guide, etc., are some typical Waveguides that our TB approacﬁitute of Science and Technology (KAIST), Daejeon, Korea, in 2000, and is

can be applied to in order to obtain their dispersion relations currently working toward the Ph.D. degree in electrical engineering at KAIST.
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waveguides and transmission lines.
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