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Analysis of a Ridge Waveguide Using
Overlapping T-Blocks

Yong H. Cho and Hyo J. Eom, Senior Member, IEEE

Abstract—A T-block (TB) approach is proposed to analyze
the dispersion relation of a ridge waveguide. The field rep-
resentations of a TB are obtained with the Green’s function
and mode-matching technique. Rigorous, yet simple dispersion
equations for symmetric and asymmetric ridge waveguides
are presented using a superposition of overlapping TBs. The
rapid convergence characteristics of the dispersion equation are
illustrated in terms of the cutoff wavenumbers. A closed-form
dispersion relation, based on a dominant-mode approximation,
is shown to be accurate for most practical applications such as
couplers, filters, and polarizer designs.

Index Terms—Dispersion, Green’s function, mode-matching
technique, ridge waveguide, superposition.

I. INTRODUCTION

T HE propagation and coupling characteristics of a ridge
waveguide have been investigated with various methods

[1]–[7] because of its broad-band, low cutoff-frequency, and
low-impedance characteristics compatible with a coaxial line.
When the geometry of a waveguide is complicated such as a
ridge waveguide, the formulation and dispersion analysis be-
comes naturally involved. It is, therefore, desirable to develop an
analysis scheme with fast CPU time, increased accuracy, simple
applicability, and wide versatility. To that end, we propose a
new approach using the T-block (TB) and superposition. Based
on the idea of superposition, the method of overlapping regions
has been applied to solve some diffraction and waveguide prob-
lems [8], [9]. In [10], a simple and new equivalent network for
a T-junction, which is similar to a TB, is presented to obtain
the closed-form expression for open and slit-coupled-plane
T-junctions. In this paper, the approach of the TB and super-
position is employed to divide a total region into several over-
lapping TBs. It is possible to represent the field within a TB
in simple and numerically efficient series based on the Green’s
function and mode-matching method. The Green’s function ap-
proach allows us to reduce the number of unknown modal co-
efficients and improve the convergence rate. Since the Green’s
function for the TB is available, the involved residue calculus,
as in [7], is unnecessary, thereby increasing computational effi-
ciency. The advantage of the TB approach lies in substantially
reducing the amount of computational effort. In this paper, we
will analyze the propagation characteristics of a double-ridge
waveguide by utilizing the TB approach and superposition prin-
ciple. It is important to note that our TB approach is applicable

Manuscript received September 2, 2001; revised November 5, 2001.
The authors are with the Department of Electrical Engineering, Korea

Advanced Institute of Science and Technology, Daejeon 305-701, Korea
(e-mail: hjeom@ee.kaist.ac.kr).

Digital Object Identifier 10.1109/TMTT.2002.803449.

Fig. 1. Geometry of a TB.

to other waveguide structures, whose geometry can be broken
into several overlapping TBs such as the finline, shielded mi-
crostrip line, and multiconductor transmission line.

II. A NALYSIS OF TB

Assume that a TE wave propagates along the-direction
inside a TB in Fig. 1. The phase factor is omitted
throughout. In region (I) ( ), we represent the
component as

(1)

where , , ,
and is a unit step function. In order to represent the-field
in region (II) ( ), we divide region (II) into two subre-
gions such as shown in Fig. 2(a) and (b). Based on the superpo-
sition, the field in region (II) is given by

(2)

where and are the field components
within subregions of Fig. 2(a) and (b), respectively. Similar to
the component, we represent as

(3)

Multiplying the -field continuity at between regions
(I) and (II) by and integrating over ,
we obtain

(4)

The component of results in the discontinuity
at . In order to enforce the continuity at ,
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(a)

(b)

Fig. 2. Subregions of a TB. (a) Subregion forH (x; y). (b) Subregion for
R (x; y).

we next consider a contribution from . Utilizing the
Green’s function relation [11] gives

(5)

where is a magnetic vector potential, ,
is the outward normal direction to in Fig. 2(a)

(6)

(7)

is the greater of or , is the lesser of or
, , ( ), ,

, is shown in [11], and
is a one-dimensional Green’s function with an electric wall at

. Note that denotes an observation point ,
and is a source point . The scat-
tered component is thought of as the field produced
to eliminate the surface current . This
means that produces the discontinuity
at , which is an inverse sign to . Integrating
(5) with respect to from 0 to , we obtain

(8)

where

(9)
and . The total longitudinal magnetic field
is, therefore, given as

(10)

Note that the -field, which is produced by ,
is zero. Hence, the - and -field continuities are satisfied,
except for the -field discontinuity at and .
By enforcing the continuity of for , it
is possible to determine the dispersion relation for a TB. If a
waveguide structure can be divided into a number of TB, it is
possible to use (10) directly in the derivation of dispersion rela-
tion. The advantage of our TB approach lies in its computational
simplicity since (10) can be repeatedly used for each TB. In the
following section, we will show how to obtain the dispersion re-
lation for a ridge waveguide from (10).

Similarly from the analysis of the TE mode, the compo-
nents for the TM mode are represented as

(11)

(12)

where

(13)

(14)

(15)

(16)

We then obtain the total longitudinal electric field as

(17)

Contrary to the TE mode, the total field is continuous
at , while the -field is discontinuous. The dispersion
relation can be obtained by enforcing the-field continuity at

for . Although and are represented
in series forms, their convergence rate is very fast, thus, efficient
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Fig. 3. Geometry of a double-ridge waveguide.

Fig. 4. Superposition of two TBs.

for numerical computations. Note that the convergence charac-
teristics of and are independent of in Fig. 1. These
characteristics are different from the standard mode-matching
technique, where its convergence rate is mainly determined by

. When , our solutions converge to those of a rectan-
gular groove guide with an electric conductor cover at in
[12].

III. A NALYSIS OF RIDGE WAVEGUIDE USING TWO TBS

It is possible to apply the TB approach to the dispersion anal-
ysis for a double-ridge waveguide. We first divide a double-
ridge waveguide in Fig. 3 into two overlapping TBs, as shown
in Fig. 4. The -field in a ridge waveguide is represented as

(18)

Note that the coordinate in Fig. 3 is the global coordinate
system for a double-ridge waveguide, and in Fig. 4 is
the local coordinate system for subregions of TBs. The enforce-
ment of the boundary conditions on the -field continuities
is required to determine the relations of modal coefficients
and . In matching the continuity, it is expedient to intro-
duce a general integration form as

(19)

where and

(20)

Since the integrand of is composed of elementary
functions, the evaluation of (20) is trivial. In order to satisfy the

continuity at and
, we put and into (19), respectively,

and obtain the dispersion relation for a double-ridge waveguide
as

(21)

(22)

When a double-ridge waveguide is symmetric with respect to
the -direction, . Note that sign denotes even
and odd modes with respect to the-direction, respectively. The
dispersion equations, i.e., (21) and (22), then reduce to a sim-
plified one as

(23)

In a dominant-mode approximation , (23) fur-
ther simplifies to

(24)

where and . Similarly,
utilizing the approach of TB and superposition, we obtain the
TM dispersion relation of a double-ridge waveguide as

(25)

(26)
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TABLE I
CUTOFF WAVENUMBERS (IN RADIANS PER METER) OF THE FIRST EIGHT TE

MODES FOR ASINGLE-RIDGE WAVEGUIDE. PARAMETERS: a = 1:7 mm,
T = T = 19 mm,d = 0:3 mm,b = b = 9:35 mm

where

(27)

(28)

In a dominant-mode approximation for a sym-
metric single-ridge waveguide, (25) and (26) reduce to

(29)

where . Tables I and II show the conver-
gence characteristics of the TE and TM modes in a single-ridge
waveguide, respectively. The agreement of our solution with [5]
is excellent, and even a dominant-mode solution ( ) is ac-
curate within 1% error. This means that the dominant-mode dis-
persion relations, i.e., (24) and (29), are useful for most practical
applications. Fig. 5 represents the cutoff wavenumber character-
istics of the mode in a single-ridge waveguide versus the
position of a ridge. As the width of the ridgeincreases, the
cutoff wavenumber of the mode decreases. This means
that the bandwidth of a single-mode operation increases. The

TABLE II
CUTOFF WAVENUMBERS (IN RADIANS PER METER) OF THE FIRST EIGHT TM

MODES FOR ASINGLE-RIDGE WAVEGUIDE. PARAMETERS: a = 1:7 mm,
T = T = 19 mm,d = 0:3 mm,b = b = 9:35 mm

Fig. 5. Cutoff wavenumber of theTE mode in a double-ridge waveguide
versus the position of the ridge. (a = 1:7 mm,T = T = 19 mm, and
b + b + d = T ).

Fig. 6. Geometry of an asymmetric double-ridge waveguide.

dominant-mode solution agrees well with the higher mode solu-
tions, thus confirming the fast convergence. As
approaches one, the solution converges to that of a single TB
with .

IV. A NALYSIS OF RIDGE WAVEGUIDE USING FOUR L-BLOCKS

For the analysis of an asymmetric double-ridge waveguide in
Fig. 6, it is convenient to use an L-block (LB), as shown in Fig. 7.
An asymmetric double-ridge waveguide in Fig. 6 is divided into
four overlapping LBs, as shown in Fig. 8. The -field in an
asymmetric double-ridge waveguide is represented as the su-
perposition of four LBs. Then

(30)
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Fig. 7. Geometry of an LB.

Fig. 8. Superposition of four LBs.

where . Matching
points for the -field continuities are ,

, , and
in the global coordinates of Fig. 6. Using the same procedure
as in Section III, the dispersion relations of an asymmetric
double-ridge waveguide are obtained. For instance, the dis-
persion equation corresponding to the matching point is
obtained as

(31)

where . It is straightfor-
ward to obtain the remaining three dispersion equations corre-
sponding to , , and

TABLE III
CUTOFF WAVENUMBERS (IN RADIANS PER METER) OF THE THREE TE

MODES FOR ANASYMMETRIC DOUBLE-RIDGE WAVEGUIDE USING TWO

LBS. PARAMETERS: a = 10 mm,d = 10 mm,a = 7:5 mm,
d = 15 mm,b = 5 mm,T = 45 mm

TABLE IV
CUTOFF WAVENUMBERS (IN RADIANS PER METER) OF THE FIRST FIVE

TE MODES FOR ANASYMMETRIC DOUBLE-RIDGE WAVEGUIDE USING

TWO TBS. PARAMETERS: a = 5 mm, d = 10 mm,T = 30 mm,
b = 20 mm,T = 40 mm,b = 15 mm

(a)

(b)

Fig. 9. H -field distributions of TE modes using two TBs. (a) Asymmetric
double-ridge waveguide. (b) Symmetric double-ridge waveguide.

. In order to verify the validity of the approach
based on the LB, in Table III we show the cutoff wavenumber
of an asymmetric ridge waveguide of Fig. 3. For comparative
purpose, we also show the result with the TB approach for the
same geometry in Table IV. Since the width of the LB () is
twice that of the TB in our computation, the convergence char-
acteristics of the TB is better. This is because additional higher
modes are needed to obtain convergence as the widthin re-
gion (I) becomes wider. It is interesting to note that the cutoff
wavenumbers of the second and third modes in Table IV approx-
imately agree with those of a rectangular waveguide, i.e., 78.54
and 104.7, respectively. In Fig. 9(a), the -field distribution
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of the second mode in Table IV is illustrated. The-field is
almost concentrated within the left-hand-side cavity of Fig. 3,
whose field distribution is very similar to that of a rectangular
waveguide. Since the propagation constant for an asymmetric
double-ridge waveguide is quite different from the rectangular
waveguide similar to the right-hand-side cavity, the wave within
the right-hand-side cavity becomes evanescent. The-field
plot of a symmetric ridge waveguide is shown in Fig. 9(b). The

-field is distributed in two cavities as it should be.

V. CONCLUSION

A novel TB approach has been proposed for analyzing sym-
metric and asymmetric ridge waveguides. Simple closed-form
dispersion relations for ridge waveguides are expressed in
rapidly convergent series. Computed results indicate that,
our method, based on a superposition of overlapping TBs, is
accurate and numerically efficient. A dominant-mode approx-
imation for a ridge waveguide is shown to be valid and useful
for most practical cases. It is possible to extend our theory to
the analysis of other complex waveguide structures that can be
divided into a superposition of overlapping TBs. For example,
the shielded microstrip line, finline, nonradiative dielectric
guide, etc., are some typical waveguides that our TB approach
can be applied to in order to obtain their dispersion relations.
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